Physique Générale : Fluides et électromagnétisme (MA) — Prof. C. Theiler

2 Juin 2025 Masson Vincent

Corrigé 13

Exercice 1: Auto-inductance

On reprend |'exercice 4 de la semaine précédente (“Induction et force de Lorentz”) avec une bobine
de résistance R, constituée de N = nl ([ est la hauteur de la bobine, n est le nombre de tours par
unité de hauteur de la bobine) spires rectangulaires de longueur k et de largeur w. Maintenant, on
prend en compte I'auto-inductance de la bobine qui sera assimilée a une bobine idéale. On supposera
que la bobine se déplace a une vitesse u constante le long de I'axe z.
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Pendant la période durant laquelle la bobine entre dans la zone soumise au champ B mais n’est
pas encore entiérement dedans, exprimez le flux du champ total (le champ B extérieur plus celui
produit par le courant I dans la bobine) & travers la bobine en fonction du courant I et de la
distance = parcourue par la bobine a I'intérieur de la zone avec le champ magnétique.

A partir du résultat de la partie a), montrez qu’en présence d'une variation du flux totale,
la bobine est équivalente a un circuit fermé composé d'une résistance R, d'une inductance
L = pon®lwk et d’'une fem ¢. Déterminez I(t) pour l'intervalle de temps ou la bobine entre
dans la zone soumise au champ magnétique B uniforme.

Déterminez la dépendance temporelle du courant I(t) pour l'intervalle de temps ot la bobine est
entiérement dans la zone soumise au champ magnétique B uniforme (avant qu’elle ne commence
a sortir par le coté droit).

Solution:

(a) Comme surface S, on choisit la section de la bobine. Son aire est donc wk. On oriente ds

le long de l'axe z, tel qu’il sorte de la feuille. Par conséquent, le sens positif de la boucle
est dans le sens inverse des aiguilles d’'une montre (selon le point de vue du schéma de
I’énoncé). Selon la régle de Lenz, on s’attend que le courant induit I circule aussi dans ce
sens.

Le flux total ¢¢or poucie & travers une boucle de la bobine est :

Qstot,boucle = wrBeyt - €, +wWkBy - €,

ol éext = —By€, est le champ extérieur et gb celui produit par la bobine. Pour une bobine
idéale, on a que By = pugnlé, (voir cours). On trouve donc

¢tot7boucle = —wzBy + ,U{]TLIW]{
Pour les N = nl boucles, on a donc que

¢tot = —nlwz By + ,LL[)TZQZIUJIC



(b)

La loi d’induction de Faraday nous dit que la tension induite dans la bobine est

_ dbror dx o, o dl
Eind = dt = TLZWBOE oM lw’fa
Avec u = % et L = pgn’lwk, on obtient
dl
Eind = MlwBou — La

Cette tension induite fait circuler le courant dans la bobine, & travers sa résistance non-nulle,
donc

dl
ind = lwBou — L— = RI
€ind = nlwByu 7 R

Si on définit ¢ = nlwBpu comme la fem induite par le champ B extérieur, ceci s’écrit
comme :

dI
e—RI—L— =0 1
o (1)
Notre systéme est donc équivalent a un circuit RL avec la fem €.
R
Trouvant la solution générale I = Ioe_Tt de ’equation homogéne RI—l—L% =0 et la solution

particuliére I = ¢/R, on obtient la solution générale de I’équation (1) :
_Rt €
I(t) = I()e L + E
Avec la condition initiale I(t = 0) = 0 (on choisit ¢ = 0 quand = = 0) on trouve

I(t) = % (1—6*%)

On trouve que aprés un temps ¢t > L/R, le courant I est égal a celui trouvé dans ’exercice
4 de la série 12, ol on avait négligé ’auto-inductance. Le flux ¢ di au champ extérieur et
le courant dans le bobine sont montrés dans la figure en bas, pour le cas ol 7 = % < % =
tirans, avec tirqans le temps que la bobine prend pour entrer entiérement dans la zone du
champ magnétique.

Dés que la bobine est entiérement dans le champ, on a que e = 0 pour ¢ > tyrgns = =

v
Donc :
dl

—RI—L— =0
dt
avec la solution générale I(t) = Ioef% pour t > tirans. Au moment t =t .. juste avant
que la bobine soit entiérement dans la zone du champ B uniforme, on sait de la partie (b)
qu’elle porte un courant

- g _Et rans
I(tt'r'ans) = E (1 —e L )
Supposant tyans = % > % = 7, on obtient I(t,4ns) = %. Le courant étant contraint

4 étre continu en présence de la bobine, on a I(t;,4,s) = I(t)4ns) 00 tf ... correspond a
Iinstant juste aprés que la bobine soit entiérement dans la zone du champ B uniforme. Donc
g _ _Ettrans ? 3 3 — _E(t_ttrans)

5 =1loe L et en remplagant I’expression de Ip on obtient I(t) = e L pour
t > tirans- Cette situation est illustrée dans la figure ci-dessous, ainsi que le comportement

inverse quand la bobine sort du champ magnétique.



=0 x=k x=D x =D+k
t=0 t=k/u t=D/u t = (D+k)/u
P=0 d=0
¢ = -nlwkB,
I = nLwB,u/R ”'

I =-nLwByu/R}|

———————



Exercice 2: Courant induit dans une canette (Examen 2019)
On considére un cylindre creux de diamétre interne Ry et de longueur [ > Ry, orienté le long de
I'axe z, voir la figure ci-dessous. L'épaisseur d des parois du cylindre est trés mince, d < R;. Le
cylindre, constitué d'un matériau conducteur de conductivité électrique o, est plongé dans un champ
magnétique externe éext(F,t) = éext(t), uniforme dans I'espace, donné par

éext(t) =0 pour t <0
éext(t) =at €, pourt >0

ol « > 0 est une constante

(O]
(O]
Bex(t)
(O]
G
(O]

© o)

(a) Pour t > 0, trouvez la valeur de la tension induite et la direction du courant induit dans le
cylindre par le champ magnétique Bex:(t). Justifiez votre réponse. Négligez ici I'auto-inductance
du cylindre, c'est a dire I'effet du champ magnétique généré par le courant induit.

(b) Dans le cas a), pour t > 0, donnez |'expression du courant induit I(¢) en fonction de o, « et
des paramétres géométriques de la canette. Quelle est la valeur de I(t) dans la limite 0 — 00?7

(c) On suppose maintenant que I'on peut écrire la densité de courant dans la paroi du cylindre
comme j = —joép. Utilisez la loi d’Ampeére pour déterminer, a I'intérieur du cylindre (r < R1),
la norme et la direction du champ magnétique B, généré par j, en exprimant la norme de B,
en fonction de jg, puis également en fonction du courant I.
Indication : vous pouvez supposer que le champ magnétique B, est nul a I'extérieur du cylindre

(r > R1+d) et quel > Ry.
(d) Déterminez |'expression du courant I(t) en prenant en compte les effets d’auto-induction du

cylindre et en supposant que I(t = 0) = 0.

(e) En utilisant les résultats des parties c) et d), déterminez le champ magnétique total a I'intérieur
du cylindre (r < Ry) pour un temps t =ty > 0, et trouvez sa valeur pour les cas limites ¢ — 0
et o — o0.
Indication : vous pouvez utiliser le développement limité e* =~ 1 + x pour une quantité r < 1.

Solution:

a) Du fait du champ magnétique extérieur, il existe un flux magnétique a travers la section S
g g
du cylindre de rayon Rj. Si ’on oriente arbitrairement 1’élément différentiel de surface tel
que dS = —dSeé, , alors ce flux s’exprime

Pext = jj Bext - dS = —atn R}
S



La variation temporelle de Bext génére une variation du flux dans le temps, ce qui induit
Papparition d’une force électromotrice le long du contour de la surface de la canette. Avec
Iorientation choisi pour ds. , le sens conventionnel du courant (selon lequel on le compte
positivement) respectera la régle de la main droite et sera selon —éy (comme indiqué en
vert dans le schéma ci-dessous). D’apreés la loi de faraday, la force électromotrice induite

s’écrit
e _ _dgbext o _i(
ext = dt  dt

2
—atmRY)
D’ou

Cext = omR%

En considérant uniquement la résistance électrique de la canette R ainsi que la force élec-
tromotrice induite, la loi des mailles donne

RI —arR?=0

D’ou

arR}
R
Etant donné que a > 0, on a I > 0 et donc la circulation du courant se fait effectivement

selon l'orientation du schéma (NB : on aurait eu I < 0 avec une orientation de dS selon €
et donc un sens conventionnel de I selon é).

It)=1=

On remarque qu’avec ce sens effectif du courant induit, le champ magnétique généré par
le courant induit est selon —é, & l'intérieur du cylindre (régle de la main droite) et s’op-
pose donc au champ extérieur. Cela est en accord avec la régle de Lenz puisque ce champ
magnétique s’oppose aux changements du flux magnétique qui créent ce courant induit.

Tout d’abord on calcule la résistance R du cylindre selon la direction éy. Puisque d < Ry,
on peut négliger la variation de circonférence entre le bord intérieur et extérieur du cylindre.
Par conséquent, ’expression de la résistance est similaire & celle d’un fil rectiligne de section
ld et de longueur 2w Ry, on a donc

- 2Ry _127TR1
Pl T o

ou p est la résistivité du cylindre et o = 1/p sa conductivité électrique.

En remplacant ’expression de R dans la formule pour I trouvée & la question précédente,
on obtient

aRyold

I =
2




Si 0 — o0, le courant devient infini

Uhﬁn;() I(t) = —c0

Comme démontré avec les calculs précédents ainsi qu’avec la Régle de Lenz, on sait que
le champ magnétique B, créé par le courant induit est selon —é, & l'intérieur du cylindre,
tel que Ec = —B(r,0, z)e,. De plus I’énoncé nous indique que Bc est nul a I'extérieur du
cylindre. La symétrie axial du cylindre nous permet d’affirmer ’absence de dépendance en
0 et 'hypothése Ry < [ nous permet de négliger les effets de bord et donc les variations en
z du champ magnétique & l'intérieur du cylindre. D’ou

B, = —B.(r)é,

avec B.(r < Ry) > 0.

Pour trouver la valeur de B.(r) a U'intérieur du cylindre, on considére le contour d’Ampére
C rectangulaire (hauteur h, largeur w) comme illustré dans la figure ci-dessous. D’apres la

loi d’Ampére, on a
§ Bedi=po f[ -3
¢ S
— En intégrant B, sur le contour, on obtient
7{ B,-dl = hB,
C

— En intégrant la densité de courant sur la surface enlacée par le contour, on obtient

Ho fff ds = Mof JodS
S

S
Ri1+d h
= p0do / / drdz
R1 0
— wojodh

D’otu par égalité entre les deux termes précédents

I étant le courant total orienté selon —ey parcouru par la section totale S; de la canette,
on a par définition
I= ﬂj ds,
St
= ff JodSt
St
Ri+d l
= Jo / / drdz
Ry 0

= jodl

Donc jo = I/(dl) et le champ magnétique peut aussi s’exprimer sous la forme

I
B. = /1/07




~~—

~—

~

=
J

En notation vectorielle, le champ magnétique est donc

. I
B, = —’“‘%e; = —p0jodé., Yz € [0,1], Vr € [0, Ry]

(d) En tenant compte de 'auto-inductance du cylindre, la tension induite ey est

Aot d(ext + Pind) d ol 140 dI
Etot = — dto =——2 7t — = T —atwR% =+ TWR% = omR% — TWR%E
En définissant )
R
L= % Cext = omR%
La loi des mailles nous permet d’obtenir I’équation différentielle en I(t)
dI
x—L——RI=0 2
Eext dt ( )

La solution générale de cette équation s’écrit comme la somme d’une solution particuliére
Ipar de I'équation compléte avec la solution générale Iyom de I'équation homogeéne associée.
Une solution particuliére de I’équation (2) est Ipar = ext/R. L’équation homogeéne associée

dl

L—+RI=0

dt
a des solutions de la forme Iyon(t) = IpePt. En injectant cette expression dans I’équation
homogene, on trouve 8 = —R/L et ainsi Ipom(t) = Ipe™ F/L2,
Finalement, la solution générale de ’équation (2) est

Eext R

I(t) = lpar + Ihom = R + Iﬂeift




En utilisant la condition I(t = 0) = 0, on trouve Iy = —¢cext/R et, ainsi,

1) = e (1 B efgt) _ %ﬂd (1 B e—ﬁt)

Le champ total est la superposition du champ externe et de celui généré par le courant
induit I :

= — — E X _R —
Biot(t) = Bext (t) + Be(t) = <at _ Molf; t1—e Lt)) g,

En posant t = tg > 0, et en remplagant R avec sa définition, la composante du champ totale
selon €, devient

pwoaRi1od 2Ry

Biot (tO) = atp — 5 (1 — e olLd tO)

Si o — 0, la composante devient

lim Btot (to) = atyp
o—0

2n Ry
olLd

Si 0 — oo, on utilise 'expansion e* ~ 1 4+ x, avec © = — to, et on trouve

,ugoleo'dQWth _0
2 olLd ")

lim Biot(tp) = lim <at0 -
g—00 g—r00

_ momR}
vu que L = ——.



Exercice 3: Circuit électrique oscillant - Principe de la bobine de Tesla (Examen 2020)
On considére le circuit montré dans la figure ci-dessous, composé d’un condensateur de capacité C,
d’une bobine avec auto-inductance L, et d'une résistance de valeur R. L'auto-inductance du reste du
circuit (a part celle de la bobine déja tenue en compte) est négligeable. La situation initiale est telle
que l'interrupteur S est ouvert et que le condensateur porte la charge +qo.

S
oo

] q L

0
|
I

I
I
C

(a) At =0, on ferme l'interrupteur S. Démontrez que |'équation différentielle régissant I'évolution

du courant est donnée par
1 dl 1
L—+R—+—==0. 3
aw tute ()
(b) On a que I(t =0) = 0. Montrez que la deuxiéme condition initiale pour le courant est %(t =

0) = +4% si vous avez défini la direction positive du courant dans la direction de I'aiguille de

dl (4 — ) = — 90 i
montre, ou % (t = 0) = — 7% dans le cas contraire.

(c) Avec les résultats des parties a) et b), déterminez I(¢) dans la limite % > LR?.

On ajoute maintenant une deuxiéme bobine, entourant la premiére comme indiqué sur la figure ci-
dessous. La premiére bobine reste connectée au circuit comme avant. Les bornes de la deuxiéme
bobine sont ouvertes, tel qu'aucun courant ne peut circuler dans cette bobine. La longueur [y, la
section Sq, et le nombre de spires N1 de la premiére bobine sont connus. Méme chose pour la
deuxiéme bobine (I3, S2, N3). Les deux bobines peuvent &tre considérées comme des bobines idéales.

]
I Premiére bobine, connectée

au circuit, traversée par le
courant I(t)

(d) Exprimez la valeur absolue de la tension induite dans la deuxiéme bobine en fonction du courant
1(t) dans la premiére bobine et d'autres quantités données.

(e) Trouvez la valeur absolue du rapport entre la tension induite dans la deuxiéme bobine et la
tension entre les bornes de la premiére bobine. Pour simplifier I'expression finale, exprimez I'auto-
inductance de la premiére bobine en fonction du nombre de spires et de ses dimensions.



(f) En utilisant le résultat pour I(t) trouvé dans la partie c) et en supposant maintenant que R = 0,
donnez I'expression de la tension maximale induite dans la deuxiéme bobine en fonction de la
capacité et de la charge initiale ¢y du condensateur.

Solution:

(a) On défini la direction du courant et de la boucle comme dans la figure.

I S
= Oo—0
R L
Yo -9
| |
I
C
Par la loi de Kirchhoff, on obtient,
Ve+ VL + Ve =0 (4)
Puis, on trouve,
VrR=—-IR (5)
dI
Vi, =—-L— 6
L= -1 Q
t
ve =1 )
dl q(t)
LT =
o R+ C 0 (8)

La dérivée par rapport au temps nous donne :

d*I dl 1 dq(t)

L — R~ A S
dt? Rdt + C dt 0 (%)
On peut écrire le courant comme [ = —d%—(tt). On trouve donc
dI? dl I
L—+R—+ —==0. 10
awta Tt e (10)

Si on avait défini le courant positif dans le sens inverse que celui montré dans la figure, on

aurait obtenu I = dzl—gt), avec ’expression :
dl t
Lﬁ+IR+%9:O. (11)

On aurait donc trouvé la méme expression finale :

dr? ar I
L— — 4+ = =0. 12
P (12)

10



(b)

A t =0, 'équation (8) devient :

dI q0
—L — —It=0R+==0 13
G| re=one (13)
Comme I(t =0) =0, on trouve :
dal
il _ T (14)
dt|,_, LC
Pour le courant positif dans le sens anti-horaire, on aurait trouvé :
dl q0
L — It=0R+—==0 15
dal —
- — —4% (16)
dt|,_, LC

On commence & chercher une solution de la forme : I(t) = Ipexp (at). Cela nous donne
I’équation caractéristique suivante :

1
Loa* + Ra+ — =0, (17)
C
—R++/R?—4L/C R R\? 1
= =) - —. 1
L2 oL 2L <2L> LC (18)
Vu que L/C > 1/4R?, on peut récrire a9 comme :
R 1 R\> R
“2="or "\ e <2L) or, — " (19)
ol on défini la fréquence d’oscillation, w = % — (%)2.

Comme il y a deux solutions pour «, on arrive a la solution générale : I(t) = I exp (ait) +
I exp (aat).
De suite,

I(t) = exp (—Z’i) [Ty exp (iwt) + I exp (—icot)]. (20)

De la premiére condition initiale, on a que

I(tZO):Il—I—IQ:O, (21)
I = —1Is. (22)
Alors on trouve,
t
I(t) = I exp (—Z) [exp (iwt) — exp (—iwt)], (23)
Rt
I(t) =L exp | —= | 2isin (wt). (24)
2L
De la deuxiéme condition initiale, on a que
dl —Rt —Rt
e 2011 [exp <2}Lz>wcos (wt) — % exp <2};> sin (wt)], (25)

11



dI . q0
- =% w= — 26
t|,_, T rIc (26)
4o
I = . 27
' 2wLC (27)
Cela nous donne ’expression finale,
) —Rt\ .
I(t) = —— . 2
(t) wLCeXp<2L>sm(wt) (28)
Le champ B généré a l'intérieur d’une bobine idéale par un courant I est donné par
N
B(t) = mo THI(0), (29)
Le flux & travers une spire de la deuxiéme bobine est :
N1S
Dy (t) = B(t)Sy = po——21I(t). (30)

I

Cela nous donne le flux qui traverse chaque spire de la deuxiéme bobine. Donc, le flux qui
traverse l'entiéreté de la deuxiéme bobine est :

NiN>S
aiot) = po == 1(1). (31)
On trouve que la tension induite dans la deuxiéme bobine est
dPs2 1ot N1NyS, |dI
N R iy —1. 32
el = |- 22 | (32)
La tension entre les bornes de la premiére bobine est :
dI NSy |dI
=L|—|= 1= 1= 33
al = 2|5 = 2 2. &
Avec le résultat de d), on trouve :
|Eind| N1N281 dl N12S1 dl -1 N2
= po— |57 | | Ho - = . (34)
|61| ll dt ll dt N1

Notez que Iarrangement de ces deux bobines est appelé un transformateur. En appliquant
une tension alternative & la bobine d’entrée, ce dispositif permet de transformer la ten-
sion aux bornes de la bobine de sortie. Dans le cas idéal, le rapport des tensions dépend
uniquement du nombre d’enroulements des deux bobines.

De la partie ¢), supposant que R =0, on a :

Q.
(t) = ~rc S (wt), (35)
dI _ qo .
E - LC CoS (Wt)v (36)
~ NiN2St qo
|€inal = o e cos (wt)]. (37)

En remplacant L par ’expression suivante :

(38)

12



on trouve 'expression :

N-
einal = 7 3] cos (@) (39)

Donc, on trouve que la tension maximale induite dans la deuxiéme bobine est :
= —= (40)

Cette tension est donc proportionnel & gp et inversement proportionel a C.

Exercice 4: Onde électromagnétique (Examen 2019)

(a)

Dérivez |'équation d’onde pour le champ magnétique B i partir des équations de Maxwell dans
le vide (densité de charge p.; = 0, densité de courant j = 0).
Rappel : Pour un champ vectoriel A (7), on a l'identité suivante :

—

V x (ﬁxA) ﬁ(ﬁ-ff)—Aff

Les ondes électromagnétiques visibles ont une longueur d’onde entre \; = 380 nm et \y =
750 nm (1 nm = 102 m). Trouvez les fréquences v, et v, associées a ces ondes dans le vide.
La vitesse de la lumiére est ¢ = 3 x 10® m.s~!

On considére des ondes sonores de mémes longueurs d'onde (entre \; = 380 nm et Ay =
750 nm). Trouvez les fréquences v et v, associées a ces ondes a 20°C. Ces ondes sont-elles
audibles pour un étre humain? L’indice adiabatique v de I'air est 7/5, la masse moyenne des
molécules dans I'air est m = 29 - 1.67 - 10727 kg et la constante de Boltzmann est 1.38 -
1072 J K. Les fréquences audibles pour un étre humain s’étendent typiquement de 16 Hz 3
16 kHz.

Solution:

(a)

On écrit les équations de Maxwell dans le vide :

V-E =0

VxE =_9B

V-B :oat (41)
= 5 _ 10E

V x B = 3%

On utilise le fait que le temps ¢ et I'espace 7 sont deux variables indépendantes, et on utilise
I'identité vectorielle indiquée dans la consigne :

R . 1 0 (6 X E)
V(V-B)—AB:fi. 43
c? ot (43)
Finalement, on substitue la deuxiéme et la troisiéme equation du systéme (41) dans (43),
et on obtient :

13



1 0°B

AB= 5> 44
c’est-a-dire ’équation d’onde pour le champ magnétique B dans le vide.
(b) Pour une onde électromagnétique dans le vide on peut écrire :
c
= — 45
v=7, (45)
donc on calcule la fréquence d’onde associé aux longueurs d’onde A1 et Ao :
c 3-108 m.s!
=—=2"" """ ~789.104H 46
TN T 380-10 9 m “ (46)
-10% m.s~!
by = &3 mST 00101 Hy. (47)

Ao 750-10~9 m

(¢) En considérant I’air comme un gaz idéal, on peut écrire la vitesse du son comme :

Vg = 1} ’}/k;gT7 (48)

ou kp est la constante de Boltzmann et T la température en K. Dans notre cas, on obtient
donc :

~ 342 m.s~ L. (49)

7 1.38-10-23J.K-1(20 +273.15) K
Vg = (/=
B 5 29 -1.67 - 10~27kg

On peut maintenant calculer la fréquence des ondes sonores de longueurs d’onde Ay et A :

Vs 342 m.s~!
=% 22 MS 900 MH 50
N T 380109 m % (50)
42 m.s—!
by = Ve o SAZMS T My, (51)

T X 750-10%m

Ces ondes ne sont donc pas audibles pour un étre humain.

Exercice 5: Réflexion et transmission d'une onde électromagnétique

Considérons une onde électromagnétique qui se propage dans le vide vers un matériau diélectrique
uniforme et isotrope, avec un indice de réfraction n = /g, > 1. L'incidence de 'onde est perpendi-
culaire a I'interface entre vide et matériau. On s’attend a ce qu'une partie de I'onde soit transmise
et une partie réfléechie. Pour le champ E associé a I'onde, on fait I'ansatz :

— Pour 2 < 0: _ N .
E(z<0,t) = Ef(z,t) + Ep(z,1)
avec N
Ei(z,t) = Exy e!@i-hizteng,
et

ER(Zat) = Exnr ei(wt-l—kRz—l-gOR)gx

14



— Pour z>0:

—

E(z > 0,t) = Ep(z,1)

avec _
Er(z,t) = Exy @ hretenlg,

Exi, Exp et Exp sont tous € R et positifs.

Vide Diélectrique
E; EXT
X1 -1
Exr .
k’[ kT
_ = B s o
By kr YR Byr

(a) On suppose que w, kr, kr et kr sont tous positifs. Exprimez k;, kg et kr en fonction de w.
Indication : dans un matériau avec indice de réfraction n, la vitesse de la lumiére est c¢/n, avec
¢ la vitesse de la lumiére dans le vide.

(b) Complétez I'ansatz pour E par la composante du champ magnétique. Utilisez la relation

=

k %

w

é:

qui suit de la Loi de Faraday est qui est valable dans le vide comme dans le matériau. Pourquoi
sur la figure avons-nous représenté BYR opposé a By[ ?

(c) On peut montrer qu'a I'interface vide-diélectrique, les composantes des champs EetB paralléles
a l'interface sont continues®. Utilisez ces conditions pour exprimer Exr, ¢r, Exr et or en
fonction de Ex; et ;.

(d) Comme application numérique de la partie c), on prend I'interface air-eau. On a ngir = \/Erair ~
Vv 1.0006 ~ 1 ~ cas du vide, et Neqy = /Ercau ~ V1.7 = 1.3 (valable pour les longueurs d’onde

dans le visible). Quelle est votre conclusion ?

Solution:

(a) On a la relation w = %’E‘ Comme w, kr, kr et k7 sont tous positifs, on trouve dans le vide
(n=1) kr = kr = ¢. Dans le di¢lectrique (n = /) on a kr = Zw.

(b) On définit

—

= k E

Bi(z,t) = X br
=~ Ko % B
BR(Z7t) = %
=~ b % By
Br(z,t) = =—=L

1. Pour E, ceci est une conséquence de |'équation de Maxwell-Faraday, pour B c'est une conséquence de |'équation
de Maxwell-Ampére et du fait qu’il n'y a pas de courants de surface dans un diélectrique.
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Dans ce cas, on a B(z < 0,t) = Bj(z,t) + Br(z,t) et B(z > 0,t) = Bp(z,1).

Avec k; = kjé,, on trouve

= 1 = 1 . 1 .
B[(Z,t) = ;kle_; x Er = ;kle‘; % (EXI ez(wt—kzer@I)é'x) — EEXI ez(wtfklertPI)é'y

et avec kg = —kpgeyz, on trouve :

—

1 . : N 1 : .
BR(Z,t) — a(_kRez) % (EXR ez(wt-l—/ch-f-QDR)ex) — _EEXR ez(wt+kRz+goR)ey
Finalement, avec k‘} = kpez, on trouve :
= n )
Br(z,t) = EEXT el(wt*szJreoT)gy

Dans le vide comme dans un diélectrique isotrope et uniforme, les ondes électromagnétiques
sont des ondes transversales ot les vecteurs (E B k) forment un triédre orthogonal orienté
droit. Puisque 'onde réfléchie se propage selon —é;, kR est selon —é;, et donc By R est selon

—€y.
Comme l'incidence est perpendiculaire & l'interface vide-diélectrique, E et B sont paralléles
a l'interface et doivent donc étre continus. Donc :

Ei(z = 07,t)+ Er(z — 07,t) = Ep(z — 0%, 1)
et N N N
Bi(z = 07,t) + Br(z = 07,t) = Bp(z = 07,¢)

Avec les donnés de I'exercice et le résultat de la partie b), ceci donne

Exy @ttee 4 Byp e WHeRlg — Byp oilWiter)g,
et
1 itz _ 1 iwttor) z _ i(wttor)
*EXIG ey—fEXRe R ey:—EXTe €y
c c c

ce qui se simplifie en A
Exy e + Exp %% = Exr " (1)

EX] ei‘“ - EXR ei(’DR = TLEXT ei(’OT (2)

(1) + (2) = Exr = LEXI eiler—er)

1+mn
Comme on veut que Exy, Exr € R et > 0, on peut écrire
2
— = F =—F
Y1 =T XT 1tn XTI
Donc : .
n — .
(D) =(2) = Exvp = — E i(e1—¢R)
ne(1)=@2)= Exp=———Exse
et on peut écrire
SOR—(P]+7T:>EXR—7+1EXI
Avecn =1.3,0n a
Exp=""2Ey =013E
xp = bxr =0 X1
2
Exr=——FEx;=087TFE
XT = b XTI

On conclut qu'une petite partie de 'onde est réfléchie. Ceci explique pourquoi, méme si
vous pouvez voir la réflexion de votre visage sur l’eau, un miroir est quand-méme beaucoup
plus efficace.
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