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2 Juin 2025 Masson Vincent

Corrigé 13

Exercice 1: Auto-inductance
On reprend l'exercice 4 de la semaine précédente (�Induction et force de Lorentz�) avec une bobine
de résistance R, constituée de N = nl (l est la hauteur de la bobine, n est le nombre de tours par
unité de hauteur de la bobine) spires rectangulaires de longueur k et de largeur w. Maintenant, on
prend en compte l'auto-inductance de la bobine qui sera assimilée à une bobine idéale. On supposera
que la bobine se déplace à une vitesse u constante le long de l'axe x.

(a) Pendant la période durant laquelle la bobine entre dans la zone soumise au champ B mais n'est
pas encore entièrement dedans, exprimez le �ux du champ total (le champ B extérieur plus celui
produit par le courant I dans la bobine) à travers la bobine en fonction du courant I et de la
distance x parcourue par la bobine à l'intérieur de la zone avec le champ magnétique.

(b) À partir du résultat de la partie a), montrez qu'en présence d'une variation du �ux totale,
la bobine est équivalente à un circuit fermé composé d'une résistance R, d'une inductance
L = µ0n

2lωk et d'une fem ε. Déterminez I(t) pour l'intervalle de temps où la bobine entre
dans la zone soumise au champ magnétique B uniforme.

(c) Déterminez la dépendance temporelle du courant I(t) pour l'intervalle de temps où la bobine est
entièrement dans la zone soumise au champ magnétique B uniforme (avant qu'elle ne commence
à sortir par le côté droit).

Solution:

(a) Comme surface S, on choisit la section de la bobine. Son aire est donc ωk. On oriente dS⃗
le long de l'axe z, tel qu'il sorte de la feuille. Par conséquent, le sens positif de la boucle
est dans le sens inverse des aiguilles d'une montre (selon le point de vue du schéma de
l'énoncé). Selon la règle de Lenz, on s'attend que le courant induit I circule aussi dans ce
sens.
Le �ux total ϕtot,boucle à travers une boucle de la bobine est :

ϕtot,boucle = ωxB⃗ext · e⃗z + ωkB⃗b · e⃗z

où B⃗ext = −B0e⃗z est le champ extérieur et B⃗b celui produit par la bobine. Pour une bobine
idéale, on a que B⃗b = µ0nIe⃗z (voir cours). On trouve donc

ϕtot,boucle = −ωxB0 + µ0nIωk

Pour les N = nl boucles, on a donc que

ϕtot = −nlωxB0 + µ0n
2lIωk
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(b) La loi d'induction de Faraday nous dit que la tension induite dans la bobine est

εind = −dϕtot

dt
= nlωB0

dx

dt
− µ0n

2lωk
dI

dt

Avec u ≡ dx
dt et L ≡ µ0n

2lωk, on obtient

εind = nlωB0u− L
dI

dt

Cette tension induite fait circuler le courant dans la bobine, à travers sa résistance non-nulle,
donc

εind = nlωB0u− L
dI

dt
= RI

Si on dé�nit ε = nlωB0u comme la fem induite par le champ B extérieur, ceci s'écrit
comme :

ε−RI − L
dI

dt
= 0 (1)

Notre système est donc équivalent à un circuit RL avec la fem ε.
Trouvant la solution générale I = I0e

−Rt
L de l'equation homogène RI+LdI

dt =0 et la solution
particulière I = ε/R, on obtient la solution générale de l'équation (1) :

I(t) = I0e
−Rt

L +
ε

R

Avec la condition initiale I(t = 0) = 0 (on choisit t = 0 quand x = 0) on trouve

I(t) =
ε

R

(
1− e−

Rt
L

)
On trouve que après un temps t ≫ L/R, le courant I est égal à celui trouvé dans l'exercice
4 de la série 12, où on avait négligé l'auto-inductance. Le �ux ϕ dû au champ extérieur et
le courant dans le bobine sont montrés dans la �gure en bas, pour le cas où τ = L

R ≪ k
u =

ttrans, avec ttrans le temps que la bobine prend pour entrer entièrement dans la zone du
champ magnétique.

(c) Dès que la bobine est entièrement dans le champ, on a que ε = 0 pour t > ttrans = k
u .

Donc :

−RI − L
dI

dt
= 0

avec la solution générale I(t) = I0e
−Rt

L pour t > ttrans. Au moment t = t−trans, juste avant
que la bobine soit entièrement dans la zone du champ B uniforme, on sait de la partie (b)
qu'elle porte un courant

I(t−trans) =
ε

R

(
1− e−

R
L
ttrans

)
Supposant ttrans = k

u ≫ L
R = τ , on obtient I(t−trans) = ε

R . Le courant étant contraint
à être continu en présence de la bobine, on a I(t−trans) = I(t+trans) où t+trans correspond a
l'instant juste après que la bobine soit entièrement dans la zone du champ B uniforme. Donc
ε
R = I0e

−R
L
ttrans et en remplaçant l'expression de I0 on obtient I(t) = ε

Re
−R

L
(t−ttrans) pour

t > ttrans. Cette situation est illustrée dans la �gure ci-dessous, ainsi que le comportement
inverse quand la bobine sort du champ magnétique.
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Exercice 2: Courant induit dans une canette (Examen 2019)
On considère un cylindre creux de diamètre interne R1 et de longueur l ≫ R1, orienté le long de
l'axe z, voir la �gure ci-dessous. L'épaisseur d des parois du cylindre est très mince, d ≪ R1. Le
cylindre, constitué d'un matériau conducteur de conductivité électrique σ, est plongé dans un champ
magnétique externe B⃗ext(r⃗, t) = B⃗ext(t), uniforme dans l'espace, donné par

B⃗ext(t) = 0⃗ pour t < 0

B⃗ext(t) = αt e⃗z pour t ≥ 0

où α > 0 est une constante

x

y

z

R1

d

Bext(t)

r
eθ

(a) Pour t > 0, trouvez la valeur de la tension induite et la direction du courant induit dans le
cylindre par le champ magnétique B⃗ext(t). Justi�ez votre réponse. Négligez ici l'auto-inductance
du cylindre, c'est à dire l'e�et du champ magnétique généré par le courant induit.

(b) Dans le cas a), pour t > 0, donnez l'expression du courant induit I(t) en fonction de σ, α et
des paramètres géométriques de la canette. Quelle est la valeur de I(t) dans la limite σ → ∞ ?

(c) On suppose maintenant que l'on peut écrire la densité de courant dans la paroi du cylindre
comme j⃗ = −j0e⃗θ. Utilisez la loi d'Ampère pour déterminer, à l'intérieur du cylindre (r < R1),
la norme et la direction du champ magnétique B⃗c généré par j⃗, en exprimant la norme de B⃗c

en fonction de j0, puis également en fonction du courant I.
Indication : vous pouvez supposer que le champ magnétique B⃗c est nul à l'extérieur du cylindre

(r > R1 + d) et que l ≫ R1.

(d) Déterminez l'expression du courant I(t) en prenant en compte les e�ets d'auto-induction du
cylindre et en supposant que I(t = 0) = 0.

(e) En utilisant les résultats des parties c) et d), déterminez le champ magnétique total à l'intérieur
du cylindre (r < R1) pour un temps t = t0 > 0, et trouvez sa valeur pour les cas limites σ → 0
et σ → ∞.
Indication : vous pouvez utiliser le développement limité ex ≈ 1 + x pour une quantité x ≪ 1.

Solution:

(a) Du fait du champ magnétique extérieur, il existe un �ux magnétique à travers la section S
du cylindre de rayon R1. Si l'on oriente arbitrairement l'élément di�érentiel de surface tel
que dS⃗ = −dSe⃗z , alors ce �ux s'exprime

ϕext =
x

S

B⃗ext · dS⃗ = −αtπR2
1
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La variation temporelle de Bext génère une variation du �ux dans le temps, ce qui induit
l'apparition d'une force électromotrice le long du contour de la surface de la canette. Avec
l'orientation choisi pour dS⃗, le sens conventionnel du courant (selon lequel on le compte
positivement) respectera la règle de la main droite et sera selon −e⃗θ (comme indiqué en
vert dans le schéma ci-dessous). D'après la loi de faraday, la force électromotrice induite
s'écrit

εext = −dϕext
dt

= − d

dt
(−αtπR2

1)

D'où
εext = απR2

1

En considérant uniquement la résistance électrique de la canette R ainsi que la force élec-
tromotrice induite, la loi des mailles donne

RI − απR2
1 = 0

D'où

I(t) = I =
απR2

1

R

Étant donné que α > 0, on a I > 0 et donc la circulation du courant se fait e�ectivement
selon l'orientation du schéma (NB : on aurait eu I < 0 avec une orientation de dS⃗ selon e⃗z
et donc un sens conventionnel de I selon e⃗θ).
On remarque qu'avec ce sens e�ectif du courant induit, le champ magnétique généré par
le courant induit est selon −e⃗z à l'intérieur du cylindre (règle de la main droite) et s'op-
pose donc au champ extérieur. Cela est en accord avec la règle de Lenz puisque ce champ
magnétique s'oppose aux changements du �ux magnétique qui créent ce courant induit.

x

y

z

Bext(t)

r
eθI

dS

(b) Tout d'abord on calcule la résistance R du cylindre selon la direction e⃗θ. Puisque d ≪ R1,
on peut négliger la variation de circonférence entre le bord intérieur et extérieur du cylindre.
Par conséquent, l'expression de la résistance est similaire à celle d'un �l rectiligne de section
ld et de longueur 2πR1, on a donc

R = ρ
2πR1

ld
=

1

σ

2πR1

ld

où ρ est la résistivité du cylindre et σ = 1/ρ sa conductivité électrique.
En remplaçant l'expression de R dans la formule pour I trouvée à la question précédente,
on obtient

I =
αR1σld

2
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Si σ → ∞, le courant devient in�ni

lim
σ→∞

I(t) = −∞

(c) Comme démontré avec les calculs précédents ainsi qu'avec la Règle de Lenz, on sait que
le champ magnétique B⃗c créé par le courant induit est selon −e⃗z à l'intérieur du cylindre,
tel que B⃗c = −Bc(r, θ, z)e⃗z. De plus l'énoncé nous indique que B⃗c est nul à l'extérieur du
cylindre. La symétrie axial du cylindre nous permet d'a�rmer l'absence de dépendance en
θ et l'hypothèse R1 ≪ l nous permet de négliger les e�ets de bord et donc les variations en
z du champ magnétique à l'intérieur du cylindre. D'où

B⃗c = −Bc(r)e⃗z

avec Bc(r < R1) > 0.

Pour trouver la valeur de Bc(r) à l'intérieur du cylindre, on considère le contour d'Ampère
C rectangulaire (hauteur h, largeur w) comme illustré dans la �gure ci-dessous. D'après la
loi d'Ampère, on a ∮

C
B⃗c · d⃗l = µ0

x

S

j⃗ · dS⃗

� En intégrant B⃗c sur le contour, on obtient∮
C
B⃗c · d⃗l = hBc

� En intégrant la densité de courant sur la surface enlacée par le contour, on obtient

µ0

x

S

j⃗ · dS⃗ = µ0

x

S

j0dS

= µ0j0

∫ R1+d

R1

∫ h

0
drdz

= µ0j0dh

D'où par égalité entre les deux termes précédents

Bc = µ0j0d

I étant le courant total orienté selon −e⃗θ parcouru par la section totale St de la canette,
on a par dé�nition

I =
x

St

j⃗ · dS⃗t

=
x

St

j0dSt

= j0

∫ R1+d

R1

∫ l

0
drdz

= j0dl

Donc j0 = I/(dl) et le champ magnétique peut aussi s'exprimer sous la forme

Bc = µ0
I

l
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x

y
zBc

dS

dl

h

w

j

En notation vectorielle, le champ magnétique est donc

B⃗c = −µ0I

l
e⃗z = −µ0j0de⃗z, ∀z ∈ [0, l], ∀r ∈ [0, R1]

(d) En tenant compte de l'auto-inductance du cylindre, la tension induite εtot est

εtot = −dϕtot
dt

= −d(ϕext + ϕind)

dt
= − d

dt

(
−αtπR2

1 +
µ0I

l
πR2

1

)
= απR2

1 −
µ0

l
πR2

1

dI

dt

En dé�nissant

L =
µ0πR

2
1

l
εext = απR2

1

La loi des mailles nous permet d'obtenir l'équation di�érentielle en I(t)

εext − L
dI

dt
−RI = 0 (2)

La solution générale de cette équation s'écrit comme la somme d'une solution particulière
Ipar de l'équation complète avec la solution générale Ihom de l'équation homogène associée.
Une solution particulière de l'équation (2) est Ipar = εext/R. L'équation homogène associée

L
dI

dt
+RI = 0

a des solutions de la forme Ihom(t) = I0e
βt. En injectant cette expression dans l'équation

homogène, on trouve β = −R/L et ainsi Ihom(t) = I0e
−(R/L)t.

Finalement, la solution générale de l'équation (2) est

I(t) = Ipar + Ihom =
εext
R

+ I0e
−R

L
t
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En utilisant la condition I(t = 0) = 0, on trouve I0 = −εext/R et, ainsi,

I(t) =
εext
R

(
1− e−

R
L
t
)
=

αR1σld

2

(
1− e

− 2
µ0σdR1

t
)

(e) Le champ total est la superposition du champ externe et de celui généré par le courant
induit I :

B⃗tot(t) = B⃗ext(t) + B⃗c(t) =
(
αt− µ0εext

lR
(1− e−

R
L
t)
)
e⃗z

En posant t = t0 > 0, et en remplaçant R avec sa dé�nition, la composante du champ totale
selon e⃗z devient

Btot(t0) = αt0 −
µ0αR1σd

2
(1− e−

2πR1
σlLd

t0)

Si σ → 0, la composante devient

lim
σ→0

Btot(t0) = αt0

Si σ → ∞, on utilise l'expansion ex ≈ 1 + x, avec x = −2πR1
σlLd t0, et on trouve

lim
σ→∞

Btot(t0) = lim
σ→∞

(
αt0 −

µ0αR1σd

2

2πR1

σlLd
t0

)
= 0

vu que L =
µ0πR2

1
l .
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Exercice 3: Circuit électrique oscillant - Principe de la bobine de Tesla (Examen 2020)
On considère le circuit montré dans la �gure ci-dessous, composé d'un condensateur de capacité C,
d'une bobine avec auto-inductance L, et d'une résistance de valeur R. L'auto-inductance du reste du
circuit (à part celle de la bobine déjà tenue en compte) est négligeable. La situation initiale est telle
que l'interrupteur S est ouvert et que le condensateur porte la charge +q0.

(a) À t = 0, on ferme l'interrupteur S. Démontrez que l'équation di�érentielle régissant l'évolution
du courant est donnée par

L
d2I

dt2
+R

dI

dt
+

I

C
= 0. (3)

(b) On a que I(t = 0) = 0. Montrez que la deuxième condition initiale pour le courant est dI
dt (t =

0) = + q0
LC si vous avez dé�ni la direction positive du courant dans la direction de l'aiguille de

montre, ou dI
dt (t = 0) = − q0

LC dans le cas contraire.

(c) Avec les résultats des parties a) et b), déterminez I(t) dans la limite L
C > 1

4R
2.

On ajoute maintenant une deuxième bobine, entourant la première comme indiqué sur la �gure ci-
dessous. La première bobine reste connectée au circuit comme avant. Les bornes de la deuxième
bobine sont ouvertes, tel qu'aucun courant ne peut circuler dans cette bobine. La longueur l1, la
section S1, et le nombre de spires N1 de la première bobine sont connus. Même chose pour la
deuxième bobine (l2, S2, N2). Les deux bobines peuvent être considérées comme des bobines idéales.

(d) Exprimez la valeur absolue de la tension induite dans la deuxième bobine en fonction du courant
I(t) dans la première bobine et d'autres quantités données.

(e) Trouvez la valeur absolue du rapport entre la tension induite dans la deuxième bobine et la
tension entre les bornes de la première bobine. Pour simpli�er l'expression �nale, exprimez l'auto-
inductance de la première bobine en fonction du nombre de spires et de ses dimensions.
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(f) En utilisant le résultat pour I(t) trouvé dans la partie c) et en supposant maintenant que R = 0,
donnez l'expression de la tension maximale induite dans la deuxième bobine en fonction de la
capacité et de la charge initiale q0 du condensateur.

Solution:

(a) On dé�ni la direction du courant et de la boucle comme dans la �gure.

Par la loi de Kirchho�, on obtient,

VR + VL + VC = 0 (4)

Puis, on trouve,
VR = −IR (5)

VL = −L
dI

dt
(6)

VC =
q(t)

C
(7)

−L
dI

dt
− IR+

q(t)

C
= 0 (8)

La dérivée par rapport au temps nous donne :

−L
d2I

dt2
−R

dI

dt
+

1

C

dq(t)

dt
= 0 (9)

On peut écrire le courant comme I = −dq(t)
dt . On trouve donc

L
dI2

dt2
+R

dI

dt
+

I

C
= 0. (10)

Si on avait dé�ni le courant positif dans le sens inverse que celui montré dans la �gure, on
aurait obtenu I = dq(t)

dt , avec l'expression :

L
dI

dt
+ IR+

q(t)

C
= 0. (11)

On aurait donc trouvé la même expression �nale :

L
dI2

dt2
+R

dI

dt
+

I

C
= 0. (12)
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(b) À t = 0, l'équation (8) devient :

−L
dI

dt

∣∣∣∣
t=0

− I(t = 0)R+
q0
C

= 0. (13)

Comme I(t = 0) = 0, on trouve :
dI

dt

∣∣∣∣
t=0

=
+q0
LC

(14)

Pour le courant positif dans le sens anti-horaire, on aurait trouvé :

L
dI

dt

∣∣∣∣
t=0

+ I(t = 0)R+
q0
C

= 0, (15)

dI

dt

∣∣∣∣
t=0

=
−q0
LC

(16)

(c) On commence à chercher une solution de la forme : I(t) = I0 exp (αt). Cela nous donne
l'équation caractéristique suivante :

Lα2 +Rα+
1

C
= 0, (17)

α1,2 =
−R±

√
R2 − 4L/C

2L
= − R

2L
±

√(
R

2L

)2

− 1

LC
. (18)

Vu que L/C > 1/4R2, on peut récrire α1,2 comme :

α1,2 = − R

2L
± i

√
1

LC
−
(

R

2L

)2

= − R

2L
± iω, (19)

où on dé�ni la fréquence d'oscillation, ω =

√
1

LC −
(

R
2L

)2
.

Comme il y a deux solutions pour α, on arrive à la solution générale : I(t) = I1 exp (α1t)+
I2 exp (α2t).

De suite,

I(t) = exp

(
−Rt

2L

)
[I1 exp (iωt) + I2 exp (−iωt)]. (20)

De la première condition initiale, on a que

I(t = 0) = I1 + I2 = 0, (21)

I1 = −I2. (22)

Alors on trouve,

I(t) = I1 exp

(
−Rt

2L

)
[exp (iωt)− exp (−iωt)], (23)

I(t) = I1 exp

(
−Rt

2L

)
2i sin (ωt). (24)

De la deuxième condition initiale, on a que

dI

dt
= 2iI1[exp

(
−Rt

2L

)
ω cos (ωt)− R

2L
exp

(
−Rt

2L

)
sin (ωt)], (25)
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dI

dt

∣∣∣∣
t=0

= 2iI1ω =
q0
LC

, (26)

I1 =
q0

2iωLC
. (27)

Cela nous donne l'expression �nale,

I(t) =
q0

ωLC
exp

(
−Rt

2L

)
sin (ωt). (28)

(d) Le champ B généré à l'intérieur d'une bobine idéale par un courant I est donné par

B(t) = µ0
N1

l1
I(t), (29)

Le �ux à travers une spire de la deuxième bobine est :

Φ2(t) = B(t)S1 = µ0
N1S1

l1
I(t). (30)

Cela nous donne le �ux qui traverse chaque spire de la deuxième bobine. Donc, le �ux qui
traverse l'entièreté de la deuxième bobine est :

Φ2,tot(t) = µ0
N1N2S1

l1
I(t). (31)

On trouve que la tension induite dans la deuxième bobine est

|ϵind| =
∣∣∣∣−dΦ2,tot

dt

∣∣∣∣ = µ0
N1N2S1

l1

∣∣∣∣dIdt
∣∣∣∣ . (32)

(e) La tension entre les bornes de la première bobine est :

|ϵ1| = L

∣∣∣∣dIdt
∣∣∣∣ = µ0

N2
1S1

l1

∣∣∣∣dIdt
∣∣∣∣ , (33)

Avec le résultat de d), on trouve :

|ϵind|
|ϵ1|

= µ0
N1N2S1

l1

∣∣∣∣dIdt
∣∣∣∣ (µ0

N2
1S1

l1

∣∣∣∣dIdt
∣∣∣∣)−1

=
N2

N1
. (34)

Notez que l'arrangement de ces deux bobines est appelé un transformateur. En appliquant
une tension alternative à la bobine d'entrée, ce dispositif permet de transformer la ten-
sion aux bornes de la bobine de sortie. Dans le cas idéal, le rapport des tensions dépend
uniquement du nombre d'enroulements des deux bobines.

(f) De la partie c), supposant que R = 0, on a :

I(t) =
q0

ωLC
sin (ωt), (35)

dI

dt
=

q0
LC

cos (ωt), (36)

|ϵind| = µ0
N1N2S1

l1

q0
LC

| cos (ωt)|. (37)

En remplaçant L par l'expression suivante :

L = µ0
N2

1S1

l1
, (38)
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on trouve l'expression :

|ϵind| =
N2

N1

q0
C
| cos (ωt)|. (39)

Donc, on trouve que la tension maximale induite dans la deuxième bobine est :

ϵmax
ind =

N2

N1

q0
C
. (40)

Cette tension est donc proportionnel à q0 et inversement proportionel à C.

Exercice 4: Onde électromagnétique (Examen 2019)

(a) Dérivez l'équation d'onde pour le champ magnétique B⃗ à partir des équations de Maxwell dans
le vide (densité de charge ρel = 0, densité de courant j⃗ = 0).
Rappel : Pour un champ vectoriel A⃗ (r⃗), on a l'identité suivante :

∇⃗ ×
(
∇⃗ × A⃗

)
= ∇⃗

(
∇⃗ · A⃗

)
−∆A⃗

(b) Les ondes électromagnétiques visibles ont une longueur d'onde entre λ1 = 380 nm et λ2 =
750 nm (1 nm = 10−9 m). Trouvez les fréquences ν1 et ν2 associées à ces ondes dans le vide.
La vitesse de la lumière est c = 3× 108 m.s−1

(c) On considère des ondes sonores de mêmes longueurs d'onde (entre λ1 = 380 nm et λ2 =
750 nm). Trouvez les fréquences ν1 et ν2 associées à ces ondes à 20◦C. Ces ondes sont-elles
audibles pour un être humain ? L'indice adiabatique γ de l'air est 7/5, la masse moyenne des
molécules dans l'air est m = 29 · 1.67 · 10−27 kg et la constante de Boltzmann est 1.38 ·
10−23 J.K−1. Les fréquences audibles pour un être humain s'étendent typiquement de 16 Hz à
16 kHz.

Solution:

(a) On écrit les équations de Maxwell dans le vide :


∇⃗ · E⃗ = 0

∇⃗ × E⃗ = −∂B⃗
∂t

∇⃗ · B⃗ = 0

∇⃗ × B⃗ = 1
c2

∂E⃗
∂t .

(41)

On calcule le rotationnel de la quatrième équation (l'équation de Maxwell-Ampère) :

∇⃗ ×
(
∇⃗ × B⃗

)
=

1

c2
∇⃗ × ∂E⃗

∂t
. (42)

On utilise le fait que le temps t et l'espace r⃗ sont deux variables indépendantes, et on utilise
l'identité vectorielle indiquée dans la consigne :

∇⃗
(
∇⃗ · B⃗

)
−∆B⃗ =

1

c2

∂
(
∇⃗ × E⃗

)
∂t

. (43)

Finalement, on substitue la deuxième et la troisième equation du système (41) dans (43),
et on obtient :
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∆B⃗ =
1

c2
∂2B⃗

∂t2
, (44)

c'est-à-dire l'équation d'onde pour le champ magnétique B⃗ dans le vide.

(b) Pour une onde électromagnétique dans le vide on peut écrire :

ν =
c

λ
, (45)

donc on calcule la fréquence d'onde associé aux longueurs d'onde λ1 et λ2 :

ν1 =
c

λ1
=

3 · 108 m.s−1

380 · 10−9 m
≃ 7.89 · 1014 Hz, (46)

ν2 =
c

λ2
=

3 · 108 m.s−1

750 · 10−9 m
≃ 4.00 · 1014 Hz. (47)

(c) En considérant l'air comme un gaz idéal, on peut écrire la vitesse du son comme :

vs =

√
γkBT

m
, (48)

où kB est la constante de Boltzmann et T la température en K. Dans notre cas, on obtient
donc :

vs =

√
7

5
· 1.38 · 10

−23J.K−1 (20 + 273.15)K

29 · 1.67 · 10−27kg
≃ 342 m.s−1. (49)

On peut maintenant calculer la fréquence des ondes sonores de longueurs d'onde λ1 et λ2 :

ν1 =
vs
λ1

=
342 m.s−1

380 · 10−9 m
≃ 900 MHz, (50)

ν2 =
vs
λ2

=
342 m.s−1

750 · 10−9 m
≃ 456 MHz. (51)

Ces ondes ne sont donc pas audibles pour un être humain.

Exercice 5: Ré�exion et transmission d'une onde électromagnétique
Considérons une onde électromagnétique qui se propage dans le vide vers un matériau diélectrique
uniforme et isotrope, avec un indice de réfraction n =

√
εr > 1. L'incidence de l'onde est perpendi-

culaire à l'interface entre vide et matériau. On s'attend à ce qu'une partie de l'onde soit transmise
et une partie ré�échie. Pour le champ E⃗ associé à l'onde, on fait l'ansatz :
� Pour z < 0 : ˜⃗

E(z < 0, t) =
˜⃗
EI(z, t) +

˜⃗
ER(z, t)

avec ˜⃗
EI(z, t) = EXI ei(ωt−kIz+φI)e⃗x

et ˜⃗
ER(z, t) = EXR ei(ωt+kRz+φR)e⃗x
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� Pour z > 0 : ˜⃗
E(z > 0, t) =

˜⃗
ET (z, t)

avec ˜⃗
ET (z, t) = EXT ei(ωt−kT z+φT )e⃗x

EXI , EXR et EXT sont tous ∈ R et positifs.

(a) On suppose que ω, kI , kR et kT sont tous positifs. Exprimez kI , kR et kT en fonction de ω.
Indication : dans un matériau avec indice de réfraction n, la vitesse de la lumière est c/n, avec
c la vitesse de la lumière dans le vide.

(b) Complétez l'ansatz pour E⃗ par la composante du champ magnétique. Utilisez la relation

˜⃗
B =

k⃗ × ˜⃗
E

ω

qui suit de la Loi de Faraday est qui est valable dans le vide comme dans le matériau. Pourquoi
sur la �gure avons-nous représenté B⃗Y R opposé à B⃗Y I ?

(c) On peut montrer qu'à l'interface vide-diélectrique, les composantes des champs E⃗ et B⃗ parallèles
à l'interface sont continues 1. Utilisez ces conditions pour exprimer EXR, φR, EXT et φT en
fonction de EXI et φI .

(d) Comme application numérique de la partie c), on prend l'interface air-eau. On a nair =
√
εr,air ≈√

1.0006 ≈ 1 ≈ cas du vide, et neau =
√
εr,eau ≈

√
1.7 = 1.3 (valable pour les longueurs d'onde

dans le visible). Quelle est votre conclusion ?

Solution:

(a) On a la relation ω = c
n |⃗k|. Comme ω, kI , kR et kT sont tous positifs, on trouve dans le vide

(n = 1) kI = kR = ω
c . Dans le diélectrique (n =

√
εr) on a kT = n

cω.

(b) On dé�nit ˜⃗
BI(z, t) =

k⃗I ×
˜⃗
EI

ω

˜⃗
BR(z, t) =

k⃗R × ˜⃗
ER

ω

˜⃗
BT (z, t) =

k⃗T × ˜⃗
ET

ω

1. Pour E⃗, ceci est une conséquence de l'équation de Maxwell-Faraday, pour B⃗ c'est une conséquence de l'équation

de Maxwell-Ampère et du fait qu'il n'y a pas de courants de surface dans un diélectrique.
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Dans ce cas, on a ˜⃗
B(z < 0, t) =

˜⃗
BI(z, t) +

˜⃗
BR(z, t) et

˜⃗
B(z > 0, t) =

˜⃗
BT (z, t).

Avec ˜⃗
kI = kI e⃗z, on trouve˜⃗
BI(z, t) =

1

ω
kI e⃗z ×

˜⃗
EI =

1

ω
kI e⃗z × (EXI ei(ωt−kIz+φI)e⃗x) =

1

c
EXI ei(ωt−kIz+φI)e⃗y

et avec k⃗R = −kRe⃗Z , on trouve :˜⃗
BR(z, t) =

1

ω
(−kRe⃗z)× (EXR ei(ωt+kRz+φR)e⃗x) = −1

c
EXR ei(ωt+kRz+φR)e⃗y

Finalement, avec k⃗T = kT e⃗Z , on trouve :˜⃗
BT (z, t) =

n

c
EXT ei(ωt−kT z+φT )e⃗y

Dans le vide comme dans un diélectrique isotrope et uniforme, les ondes électromagnétiques
sont des ondes transversales où les vecteurs (E⃗, B⃗, k⃗) forment un trièdre orthogonal orienté
droit. Puisque l'onde ré�échie se propage selon −e⃗z, k⃗R est selon −e⃗z et donc ⃗BY R est selon
−e⃗y.

(c) Comme l'incidence est perpendiculaire à l'interface vide-diélectrique, E⃗ et B⃗ sont parallèles
à l'interface et doivent donc être continus. Donc :˜⃗

EI(z → 0−, t) +
˜⃗
ER(z → 0−, t) =

˜⃗
ET (z → 0+, t)

et ˜⃗
BI(z → 0−, t) +

˜⃗
BR(z → 0−, t) =

˜⃗
BT (z → 0+, t)

Avec les donnés de l'exercice et le résultat de la partie b), ceci donne

EXI ei(ωt+φI)e⃗x + EXR ei(ωt+φR)e⃗x = EXT ei(ωt+φT )e⃗x

et
1

c
EXI ei(ωt+φI)e⃗y −

1

c
EXR ei(ωt+φR)e⃗y =

n

c
EXT ei(ωt+φT )e⃗y

ce qui se simpli�e en
EXI eiφI + EXR eiφR = EXT eiφT (1)

EXI eiφI − EXR eiφR = nEXT eiφT (2)

(1) + (2) ⇒ EXT =
2

1 + n
EXI ei(φI−φT )

Comme on veut que EXI , EXT ∈ R et > 0, on peut écrire

φI = φT ⇒ EXT =
2

1 + n
EXI

Donc :

n · (1)− (2) ⇒ EXR = −n− 1

n+ 1
EXI ei(φI−φR)

et on peut écrire

φR = φI + π ⇒ EXR =
n− 1

n+ 1
EXI

(d) Avec n = 1.3, on a

EXR =
n− 1

n+ 1
EXI = 0.13 EXI

EXT =
2

n+ 1
EXI = 0.87 EXI

On conclut qu'une petite partie de l'onde est ré�échie. Ceci explique pourquoi, même si
vous pouvez voir la ré�exion de votre visage sur l'eau, un miroir est quand-même beaucoup
plus e�cace.
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